docs.sheetjs.com/docz/static/loadofsheet/query.mjs
2025-03-26 22:49:13 -04:00

44 lines
1.5 KiB
JavaScript

import { ChatOllama, OllamaEmbeddings } from "@langchain/ollama";
import { MemoryVectorStore } from "langchain/vectorstores/memory";
import { SelfQueryRetriever } from "langchain/retrievers/self_query";
import { FunctionalTranslator } from "@langchain/core/structured_query";
import LoadOfSheet from "./loadofsheet.mjs";
let s = 0, spin = ['\\', '|', '/', '-'];
setInterval(() => { process.stderr.write(spin[s = ++s % spin.length] + '\u001b[0G'); }, 100).unref();
process.on('exit', function() { process.stderr.write('\u001b[2K'); });
const model = "llama3-chatqa:8b-v1.5-q8_0";
console.log(`Using model ${model}`);
const llm = new ChatOllama({ baseUrl: "http://127.0.0.1:11434", model });
const embeddings = new OllamaEmbeddings({model});
console.time("load of sheet");
const loader = new LoadOfSheet("./cd.xls");
const docs = await loader.load();
console.timeEnd("load of sheet");
console.time("vector store");
const vectorStore = await MemoryVectorStore.fromDocuments(docs, embeddings);
console.timeEnd("vector store");
console.time("query");
const selfQueryRetriever = SelfQueryRetriever.fromLLM({
llm,
vectorStore,
documentContents: "Data rows from a worksheet",
attributeInfo: loader.attributes,
structuredQueryTranslator: new FunctionalTranslator(),
searchParams: { k: 1024 } // default is 4
});
const res = await selfQueryRetriever.invoke(
"Which rows have over 40 miles per gallon?"
);
console.timeEnd("query");
res.forEach(({metadata}) => { console.log({ Name: metadata.Name, MPG: metadata.Miles_per_Gallon }); });