parquet file parser for javascript
Go to file
2024-03-12 20:39:15 -07:00
.github/workflows Run github actions in parallel 2024-01-08 10:13:06 -08:00
src schemaElement returns trees 2024-03-12 20:39:15 -07:00
test schemaElement returns trees 2024-03-12 20:39:15 -07:00
.eslintrc.json Oops fix the other tests 2024-02-26 22:51:57 -08:00
.gitignore schemaElement returns trees 2024-03-12 20:39:15 -07:00
benchmark.js Hysnappy wasm for faster benchmark.js 2024-02-27 14:37:32 -08:00
demo.css Better URL error handling 2024-02-04 23:53:20 -08:00
demo.js Never copy data 2024-02-09 14:35:11 -08:00
hyparquet.jpg hyparakeet 2023-12-29 12:12:30 -08:00
index.html Demo from URL 2024-02-04 23:29:20 -08:00
LICENSE Initial commit 2023-12-29 10:32:36 -08:00
package.json schemaElement returns trees 2024-03-12 20:39:15 -07:00
README.md Custom decompressors 2024-02-27 09:05:02 -08:00
tsconfig.json All javascript, no typescript 2024-01-04 11:11:00 -08:00

hyparquet

hyparquet parakeet

npm workflow status mit license dependencies

JavaScript parser for Apache Parquet files.

Apache Parquet is an open source, column-oriented data file format designed for efficient data storage and retrieval.

Dependency free since 2023!

Features

  • Designed to work with huge ML datasets (things like starcoder)
  • Can load metadata separately from data
  • Data can be filtered by row and column ranges
  • Only fetches the data needed
  • Written in JavaScript, checked with TypeScript
  • Fast data loading for large scale ML applications
  • Bring data visualization closer to the user, in the browser

Why make a new parquet parser in javascript? First, existing libraries like parquetjs are officially "inactive". Importantly, they do not support the kind of stream processing needed to make a really performant parser in the browser. And finally, no dependencies means that hyparquet is lean, and easy to package and deploy.

Demo

Online parquet file reader demo available at:

https://hyparam.github.io/hyparquet/

Demo source: index.html

Installation

npm install hyparquet

Usage

If you're in a node.js environment, you can load a parquet file with the following example:

const { parquetMetadata } = await import('hyparquet')
const fs = await import('fs')

const buffer = fs.readFileSync('example.parquet')
const arrayBuffer = new Uint8Array(buffer).buffer
const metadata = parquetMetadata(arrayBuffer)

If you're in a browser environment, you'll probably get parquet file data from either a drag-and-dropped file from the user, or downloaded from the web.

To load parquet data in the browser from a remote server using fetch:

import { parquetMetadata } from 'hyparquet'

const res = await fetch(url)
const arrayBuffer = await res.arrayBuffer()
const metadata = parquetMetadata(arrayBuffer)

To parse parquet files from a user drag-and-drop action, see example in index.html.

Async

Hyparquet supports asynchronous fetching of parquet files, over a network. You can provide an AsyncBuffer which is like a js ArrayBuffer but the slice method returns Promise<ArrayBuffer>.

Supported Parquet Files

The parquet format supports a number of different compression and encoding types. Hyparquet does not support 100% of all parquet files. Supporting every possible compression codec available in parquet would blow up the size of the hyparquet library. In practice, most parquet files use snappy compression.

You can extend support for parquet files with other compression codec using the compressors option.

import { gunzipSync } from 'zlib'
parquetRead({ file, compressors: {
  // add gzip support:
  GZIP: (input, output) => output.set(gunzipSync(input)),
}})

Compression:

  • Uncompressed
  • Snappy
  • GZip
  • LZO
  • Brotli
  • LZ4
  • ZSTD
  • LZ4_RAW

Page Type:

  • Data Page
  • Index Page
  • Dictionary Page
  • Data Page V2

Contributions are welcome!

References