hyparquet/src/query.js

206 lines
7.5 KiB
JavaScript
Raw Normal View History

2025-11-21 11:07:56 +00:00
import { matchFilter } from './filter.js'
2025-06-30 08:47:05 +00:00
import { parquetMetadataAsync, parquetSchema } from './metadata.js'
import { parquetReadColumn, parquetReadObjects } from './read.js'
2024-09-15 04:12:30 +00:00
/**
* @import {ParquetQueryFilter, BaseParquetReadOptions} from '../src/types.js'
*/
2024-09-15 04:12:30 +00:00
/**
2025-11-21 11:07:56 +00:00
* Wraps parquetRead with orderBy support.
* This is a parquet-aware query engine that can read a subset of rows and columns.
2025-11-21 11:07:56 +00:00
* Accepts optional orderBy column name to sort the results.
* Note that using orderBy may SIGNIFICANTLY increase the query time.
2024-09-15 04:12:30 +00:00
*
2025-11-21 11:07:56 +00:00
* @param {BaseParquetReadOptions & { orderBy?: string }} options
* @returns {Promise<Record<string, any>[]>} resolves when all requested rows and columns are parsed
2024-09-15 04:12:30 +00:00
*/
export async function parquetQuery(options) {
if (!options.file || !(options.file.byteLength >= 0)) {
2025-05-26 00:43:26 +00:00
throw new Error('parquet expected AsyncBuffer')
2025-03-04 17:38:39 +00:00
}
options.metadata ??= await parquetMetadataAsync(options.file, options)
2025-06-30 08:47:05 +00:00
const { metadata, rowStart = 0, columns, orderBy, filter } = options
2025-05-26 00:43:26 +00:00
if (rowStart < 0) throw new Error('parquet rowStart must be positive')
const rowEnd = options.rowEnd ?? Number(metadata.num_rows)
2024-09-15 04:12:30 +00:00
2025-06-30 08:47:05 +00:00
// Collect columns needed for the query
const filterColumns = columnsNeededForFilter(filter)
const allColumns = parquetSchema(options.metadata).children.map(c => c.element.name)
// Check if all filter columns exist
const missingColumns = filterColumns.filter(column => !allColumns.includes(column))
if (missingColumns.length) {
throw new Error(`parquet filter columns not found: ${missingColumns.join(', ')}`)
}
if (orderBy && !allColumns.includes(orderBy)) {
throw new Error(`parquet orderBy column not found: ${orderBy}`)
}
const relevantColumns = columns ? allColumns.filter(column =>
columns.includes(column) || filterColumns.includes(column) || column === orderBy
) : undefined
// Is the output a subset of the relevant columns?
const requiresProjection = columns && relevantColumns ? columns.length < relevantColumns.length : false
if (filter && !orderBy && rowEnd < metadata.num_rows) {
// iterate through row groups and filter until we have enough rows
/** @type {Record<string, any>[]} */
const filteredRows = new Array()
let groupStart = 0
for (const group of metadata.row_groups) {
const groupEnd = groupStart + Number(group.num_rows)
// TODO: if expected > group size, start fetching next groups
const groupData = await parquetReadObjects({
2025-11-21 11:07:56 +00:00
...options, rowStart: groupStart, rowEnd: groupEnd, columns: relevantColumns,
})
2025-11-21 11:07:56 +00:00
// filter and project rows
for (const row of groupData) {
2025-11-21 11:07:56 +00:00
if (matchFilter(row, filter)) {
2025-06-30 08:47:05 +00:00
if (requiresProjection && relevantColumns) {
for (const column of relevantColumns) {
if (columns && !columns.includes(column)) {
delete row[column] // remove columns not in the projection
}
}
}
filteredRows.push(row)
}
}
if (filteredRows.length >= rowEnd) break
groupStart = groupEnd
}
return filteredRows.slice(rowStart, rowEnd)
} else if (filter) {
// read all rows, sort, and filter
const results = await parquetReadObjects({
2025-11-21 11:07:56 +00:00
...options, rowStart: undefined, rowEnd: undefined, columns: relevantColumns,
})
2025-11-21 11:07:56 +00:00
// sort
if (orderBy) results.sort((a, b) => compare(a[orderBy], b[orderBy]))
2025-11-21 11:07:56 +00:00
// filter and project rows
/** @type {Record<string, any>[]} */
2025-06-30 08:47:05 +00:00
const filteredRows = new Array()
for (const row of results) {
2025-11-21 11:07:56 +00:00
if (matchFilter(row, filter)) {
2025-06-30 08:47:05 +00:00
if (requiresProjection && relevantColumns) {
for (const column of relevantColumns) {
if (columns && !columns.includes(column)) {
delete row[column] // remove columns not in the projection
}
}
}
filteredRows.push(row)
}
}
return filteredRows.slice(rowStart, rowEnd)
} else if (typeof orderBy === 'string') {
// sorted but unfiltered: fetch orderBy column first
2025-11-21 11:07:56 +00:00
const orderColumn = await parquetReadColumn({
...options, rowStart: undefined, rowEnd: undefined, columns: [orderBy],
})
2024-09-15 04:12:30 +00:00
// compute row groups to fetch
2024-09-15 04:12:30 +00:00
const sortedIndices = Array.from(orderColumn, (_, index) => index)
2025-05-27 00:27:15 +00:00
.sort((a, b) => compare(orderColumn[a], orderColumn[b]))
2024-09-15 04:12:30 +00:00
.slice(rowStart, rowEnd)
const sparseData = await parquetReadRows({ ...options, rows: sortedIndices })
// warning: the type Record<string, any> & {__index__: number})[] is simplified into Record<string, any>[]
// when returning. The data contains the __index__ property, but it's not exposed as such.
2024-09-15 04:12:30 +00:00
const data = sortedIndices.map(index => sparseData[index])
return data
} else {
return await parquetReadObjects(options)
}
}
/**
* Reads a list rows from a parquet file, reading only the row groups that contain the rows.
* Returns a sparse array of rows.
* @param {BaseParquetReadOptions & { rows: number[] }} options
* @returns {Promise<(Record<string, any> & {__index__: number})[]>}
2024-09-15 04:12:30 +00:00
*/
async function parquetReadRows(options) {
const { file, rows } = options
options.metadata ||= await parquetMetadataAsync(file, options)
2024-09-15 04:12:30 +00:00
const { row_groups: rowGroups } = options.metadata
// Compute row groups to fetch
const groupIncluded = Array(rowGroups.length).fill(false)
let groupStart = 0
const groupEnds = rowGroups.map(group => groupStart += Number(group.num_rows))
for (const index of rows) {
const groupIndex = groupEnds.findIndex(end => index < end)
groupIncluded[groupIndex] = true
}
// Compute row ranges to fetch
const rowRanges = []
let rangeStart
groupStart = 0
for (let i = 0; i < groupIncluded.length; i++) {
const groupEnd = groupStart + Number(rowGroups[i].num_rows)
if (groupIncluded[i]) {
if (rangeStart === undefined) {
rangeStart = groupStart
}
} else {
if (rangeStart !== undefined) {
rowRanges.push([rangeStart, groupEnd])
rangeStart = undefined
}
}
groupStart = groupEnd
}
if (rangeStart !== undefined) {
rowRanges.push([rangeStart, groupStart])
}
// Fetch by row group and map to rows
/** @type {(Record<string, any> & {__index__: number})[]} */
2024-09-15 04:12:30 +00:00
const sparseData = new Array(Number(options.metadata.num_rows))
for (const [rangeStart, rangeEnd] of rowRanges) {
// TODO: fetch in parallel
const groupData = await parquetReadObjects({ ...options, rowStart: rangeStart, rowEnd: rangeEnd })
for (let i = rangeStart; i < rangeEnd; i++) {
// warning: if the row contains a column named __index__, it will overwrite the index.
sparseData[i] = { __index__: i, ...groupData[i - rangeStart] }
2024-09-15 04:12:30 +00:00
}
}
return sparseData
}
/**
* @param {any} a
* @param {any} b
* @returns {number}
*/
function compare(a, b) {
if (a < b) return -1
if (a > b) return 1
return 0 // TODO: null handling
2024-09-15 04:12:30 +00:00
}
2025-06-30 08:47:05 +00:00
/**
* Returns an array of column names that are needed to evaluate the mongo filter.
*
* @param {ParquetQueryFilter} [filter]
* @returns {string[]}
*/
function columnsNeededForFilter(filter) {
if (!filter) return []
/** @type {string[]} */
const columns = []
if ('$and' in filter && Array.isArray(filter.$and)) {
columns.push(...filter.$and.flatMap(columnsNeededForFilter))
} else if ('$or' in filter && Array.isArray(filter.$or)) {
columns.push(...filter.$or.flatMap(columnsNeededForFilter))
} else if ('$nor' in filter && Array.isArray(filter.$nor)) {
columns.push(...filter.$nor.flatMap(columnsNeededForFilter))
} else {
// Column filters
columns.push(...Object.keys(filter))
}
return columns
}