forked from sheetjs/docs.sheetjs.com
		
	
		
			
				
	
	
		
			69 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			69 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
const XLSX = require('xlsx');
 | 
						|
const tf = require("@tensorflow/tfjs");
 | 
						|
//const tf = require("@tensorflow/tfjs-node");
 | 
						|
 | 
						|
function worksheet_to_csv_url(worksheet) {
 | 
						|
  /* generate CSV */
 | 
						|
  const csv = XLSX.utils.sheet_to_csv(worksheet);
 | 
						|
 | 
						|
  /* CSV -> Uint8Array -> Blob */
 | 
						|
  const u8 = new TextEncoder().encode(csv);
 | 
						|
  const blob = new Blob([u8], { type: "text/csv" });
 | 
						|
 | 
						|
  /* generate a blob URL */
 | 
						|
  return URL.createObjectURL(blob);
 | 
						|
}
 | 
						|
 | 
						|
(async() => { try {
 | 
						|
  /* fetch file */
 | 
						|
  const f = await fetch("https://docs.sheetjs.com/cd.xls");
 | 
						|
  const ab = await f.arrayBuffer();
 | 
						|
  /* parse file and get first worksheet */
 | 
						|
  const wb = XLSX.read(ab);
 | 
						|
  const ws = wb.Sheets[wb.SheetNames[0]];
 | 
						|
 | 
						|
  /* generate blob URL */
 | 
						|
  const url = worksheet_to_csv_url(ws);
 | 
						|
 | 
						|
  /* feed to tf.js */
 | 
						|
  const dataset = tf.data.csv(url, {
 | 
						|
    hasHeader: true,
 | 
						|
    configuredColumnsOnly: true,
 | 
						|
    columnConfigs:{
 | 
						|
      "Horsepower": {required: false, default: 0},
 | 
						|
      "Miles_per_Gallon":{required: false, default: 0, isLabel:true}
 | 
						|
    }
 | 
						|
  });
 | 
						|
 | 
						|
  /* pre-process data */
 | 
						|
  let flat = dataset
 | 
						|
    .map(({xs,ys}) =>({xs: Object.values(xs), ys: Object.values(ys)}))
 | 
						|
    .filter(({xs,ys}) => [...xs,...ys].every(v => v>0));
 | 
						|
 | 
						|
  /* normalize manually :( */
 | 
						|
  let minX = Infinity, maxX = -Infinity, minY = Infinity, maxY = -Infinity;
 | 
						|
  await flat.forEachAsync(({xs, ys}) => {
 | 
						|
    minX = Math.min(minX, xs[0]); maxX = Math.max(maxX, xs[0]);
 | 
						|
    minY = Math.min(minY, ys[0]); maxY = Math.max(maxY, ys[0]);
 | 
						|
  });
 | 
						|
  flat = flat.map(({xs, ys}) => ({xs:xs.map(v => (v-minX)/(maxX - minX)),ys:ys.map(v => (v-minY)/(maxY-minY))}));
 | 
						|
  flat = flat.batch(32);
 | 
						|
 | 
						|
  /* build and train model */
 | 
						|
  const model = tf.sequential();
 | 
						|
  model.add(tf.layers.dense({inputShape: [1], units: 1}));
 | 
						|
  model.compile({ optimizer: tf.train.sgd(0.000001), loss: 'meanSquaredError' });
 | 
						|
  await model.fitDataset(flat, { epochs: 100, callbacks: { onEpochEnd: async (epoch, logs) => {
 | 
						|
    console.error(`${epoch}:${logs.loss}`);
 | 
						|
  }}});
 | 
						|
 | 
						|
  /* predict values */
 | 
						|
  const inp = tf.linspace(0, 1, 9);
 | 
						|
  const pred = model.predict(inp);
 | 
						|
  const xs = await inp.dataSync(), ys = await pred.dataSync();
 | 
						|
 | 
						|
  for (let i=0; i<xs.length; ++i) {
 | 
						|
    console.log([xs[i] * (maxX - minX) + minX, ys[i] * (maxY - minY) + minY].join(" "));
 | 
						|
  }
 | 
						|
} catch(e) { console.error(`ERROR: ${String(e)}`); }})();
 |