forked from sheetjs/docs.sheetjs.com
		
	
		
			
				
	
	
		
			332 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			332 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
---
 | 
						|
title: Typed Arrays and ML
 | 
						|
pagination_prev: demos/extensions/index
 | 
						|
pagination_next: demos/engines/index
 | 
						|
sidebar_custom_props:
 | 
						|
  summary: Parse and serialize Uint8Array data from TensorFlow
 | 
						|
---
 | 
						|
 | 
						|
<head>
 | 
						|
  <script src="https://docs.sheetjs.com/tfjs/tf.min.js"></script>
 | 
						|
</head>
 | 
						|
 | 
						|
Machine learning libraries in JS typically use "Typed Arrays". Typed Arrays are
 | 
						|
not JS Arrays! With some data wrangling, translating between SheetJS worksheets
 | 
						|
and typed arrays is straightforward.
 | 
						|
 | 
						|
This demo covers conversions between worksheets and Typed Arrays for use with
 | 
						|
TensorFlow.js and other ML libraries.
 | 
						|
 | 
						|
:::note
 | 
						|
 | 
						|
Live code blocks in this page load the standalone build from version `3.18.0`.
 | 
						|
 | 
						|
For use in web frameworks, the `@tensorflow/tfjs` module should be used.
 | 
						|
 | 
						|
For use in NodeJS, the native bindings module is `@tensorflow/tfjs-node`.
 | 
						|
 | 
						|
:::
 | 
						|
 | 
						|
## CSV Data Interchange
 | 
						|
 | 
						|
`tf.data.csv` generates a Dataset from CSV data.  The function expects a URL.
 | 
						|
Fortunately blob URLs are supported, making data import straightforward:
 | 
						|
 | 
						|
```js
 | 
						|
function worksheet_to_csv_url(worksheet) {
 | 
						|
  /* generate CSV */
 | 
						|
  const csv = XLSX.utils.sheet_to_csv(worksheet);
 | 
						|
 | 
						|
  /* CSV -> Uint8Array -> Blob */
 | 
						|
  const u8 = new TextEncoder().encode(csv);
 | 
						|
  const blob = new Blob([u8], { type: "text/csv" });
 | 
						|
 | 
						|
  /* generate a blob URL */
 | 
						|
  return URL.createObjectURL(blob);
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
[This demo mirrors `TFjs` docs](https://js.tensorflow.org/api/latest/#data.csv),
 | 
						|
fetching [an XLSX export of the example dataset](https://sheetjs.com/data/bht.xlsx).
 | 
						|
 | 
						|
<details><summary><b>TF CSV Demo using XLSX files</b> (click to show)</summary>
 | 
						|
 | 
						|
:::caution
 | 
						|
 | 
						|
If the live demo shows a message
 | 
						|
 | 
						|
```
 | 
						|
ReferenceError: tf is not defined
 | 
						|
```
 | 
						|
 | 
						|
please refresh the page.  This is a known bug in the documentation generator.
 | 
						|
 | 
						|
:::
 | 
						|
 | 
						|
```jsx live
 | 
						|
function SheetJSToTFJSCSV() {
 | 
						|
  const [output, setOutput] = React.useState("");
 | 
						|
  const doit = React.useCallback(async () => {
 | 
						|
    /* fetch file */
 | 
						|
    const f = await fetch("https://sheetjs.com/data/bht.xlsx");
 | 
						|
    const ab = await f.arrayBuffer();
 | 
						|
    /* parse file and get first worksheet */
 | 
						|
    const wb = XLSX.read(ab);
 | 
						|
    const ws = wb.Sheets[wb.SheetNames[0]];
 | 
						|
 | 
						|
    /* generate CSV */
 | 
						|
    const csv = XLSX.utils.sheet_to_csv(ws);
 | 
						|
 | 
						|
    /* generate blob URL */
 | 
						|
    const u8 = new TextEncoder().encode(csv);
 | 
						|
    const blob = new Blob([u8], {type: "text/csv"});
 | 
						|
    const url = URL.createObjectURL(blob);
 | 
						|
 | 
						|
    /* feed to tfjs */
 | 
						|
    const dataset = tf.data.csv(url, {columnConfigs:{"medv":{isLabel:true}}});
 | 
						|
 | 
						|
    /* this part mirrors the tf.data.csv docs */
 | 
						|
    const flat = dataset.map(({xs,ys}) => ({xs: Object.values(xs), ys: Object.values(ys)})).batch(10);
 | 
						|
    const model = tf.sequential();
 | 
						|
    model.add(tf.layers.dense({inputShape: [(await dataset.columnNames()).length - 1], units: 1}));
 | 
						|
    model.compile({ optimizer: tf.train.sgd(0.000001), loss: 'meanSquaredError' });
 | 
						|
    let base = output;
 | 
						|
    await model.fitDataset(flat, { epochs: 10, callbacks: { onEpochEnd: async (epoch, logs) => {
 | 
						|
      setOutput(base += "\n" + epoch + ":" + logs.loss);
 | 
						|
    }}});
 | 
						|
    model.summary();
 | 
						|
  });
 | 
						|
  return ( <pre><b><a href="https://js.tensorflow.org/api/latest/#data.csv">Original CSV demo</a></b><br/><br/>
 | 
						|
    <button onClick={doit}>Click to run</button>
 | 
						|
    {output}
 | 
						|
  </pre> );
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
</details>
 | 
						|
 | 
						|
In the other direction, `XLSX.read` will readily parse CSV exports.
 | 
						|
 | 
						|
## JS Array Interchange
 | 
						|
 | 
						|
[The official Linear Regression tutorial](https://www.tensorflow.org/js/tutorials/training/linear_regression)
 | 
						|
loads data from a JSON file:
 | 
						|
 | 
						|
```json
 | 
						|
[
 | 
						|
  {
 | 
						|
    "Name": "chevrolet chevelle malibu",
 | 
						|
    "Miles_per_Gallon": 18,
 | 
						|
    "Cylinders": 8,
 | 
						|
    "Displacement": 307,
 | 
						|
    "Horsepower": 130,
 | 
						|
    "Weight_in_lbs": 3504,
 | 
						|
    "Acceleration": 12,
 | 
						|
    "Year": "1970-01-01",
 | 
						|
    "Origin": "USA"
 | 
						|
  },
 | 
						|
  {
 | 
						|
    "Name": "buick skylark 320",
 | 
						|
    "Miles_per_Gallon": 15,
 | 
						|
    "Cylinders": 8,
 | 
						|
    "Displacement": 350,
 | 
						|
    "Horsepower": 165,
 | 
						|
    "Weight_in_lbs": 3693,
 | 
						|
    "Acceleration": 11.5,
 | 
						|
    "Year": "1970-01-01",
 | 
						|
    "Origin": "USA"
 | 
						|
  },
 | 
						|
  // ...
 | 
						|
]
 | 
						|
```
 | 
						|
 | 
						|
In real use cases, data is stored in [spreadsheets](https://sheetjs.com/data/cd.xls)
 | 
						|
 | 
						|

 | 
						|
 | 
						|
Following the tutorial, the data fetching method is easily adapted. Differences
 | 
						|
from the official example are highlighted below:
 | 
						|
 | 
						|
```js
 | 
						|
/**
 | 
						|
 * Get the car data reduced to just the variables we are interested
 | 
						|
 * and cleaned of missing data.
 | 
						|
 */
 | 
						|
async function getData() {
 | 
						|
  // highlight-start
 | 
						|
  /* fetch file */
 | 
						|
  const carsDataResponse = await fetch('https://sheetjs.com/data/cd.xls');
 | 
						|
  /* get file data (ArrayBuffer) */
 | 
						|
  const carsDataAB = await carsDataResponse.arrayBuffer();
 | 
						|
  /* parse */
 | 
						|
  const carsDataWB = XLSX.read(carsDataAB);
 | 
						|
  /* get first worksheet */
 | 
						|
  const carsDataWS = carsDataWB.Sheets[carsDataWB.SheetNames[0]];
 | 
						|
  /* generate array of JS objects */
 | 
						|
  const carsData = XLSX.utils.sheet_to_json(carsDataWS);
 | 
						|
  // highlight-end
 | 
						|
  const cleaned = carsData.map(car => ({
 | 
						|
    mpg: car.Miles_per_Gallon,
 | 
						|
    horsepower: car.Horsepower,
 | 
						|
  }))
 | 
						|
  .filter(car => (car.mpg != null && car.horsepower != null));
 | 
						|
 | 
						|
  return cleaned;
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
## Low-Level Operations
 | 
						|
 | 
						|
:::caution
 | 
						|
 | 
						|
While it is more efficient to use low-level operations, JS or CSV interchange
 | 
						|
is strongly recommended when possible.
 | 
						|
 | 
						|
:::
 | 
						|
 | 
						|
### Data Transposition
 | 
						|
 | 
						|
A typical dataset in a spreadsheet will start with one header row and represent
 | 
						|
each data record in its own row.  For example, the Iris dataset might look like
 | 
						|
 | 
						|

 | 
						|
 | 
						|
`XLSX.utils.sheet_to_json` will translate this into an array of row objects:
 | 
						|
 | 
						|
```js
 | 
						|
var aoo = [
 | 
						|
  {"sepal length": 5.1, "sepal width": 3.5, ...},
 | 
						|
  {"sepal length": 4.9, "sepal width":   3, ...},
 | 
						|
  ...
 | 
						|
];
 | 
						|
```
 | 
						|
 | 
						|
TF.js and other libraries tend to operate on individual columns, equivalent to:
 | 
						|
 | 
						|
```js
 | 
						|
var sepal_lengths = [5.1, 4.9, ...];
 | 
						|
var sepal_widths = [3.5, 3, ...];
 | 
						|
```
 | 
						|
 | 
						|
When a `tensor2d` can be exported, it will look different from the spreadsheet:
 | 
						|
 | 
						|
```js
 | 
						|
var data_set_2d = [
 | 
						|
  [5.1, 4.9, ...],
 | 
						|
  [3.5, 3, ...],
 | 
						|
  ...
 | 
						|
]
 | 
						|
```
 | 
						|
 | 
						|
This is the transpose of how people use spreadsheets!
 | 
						|
 | 
						|
#### Typed Arrays and Columns
 | 
						|
 | 
						|
A single typed array can be converted to a pure JS array with `Array.from`:
 | 
						|
 | 
						|
```js
 | 
						|
var column = Array.from(dataset_typedarray);
 | 
						|
```
 | 
						|
 | 
						|
Similarly, `Float32Array.from` generates a typed array from a normal array:
 | 
						|
 | 
						|
```js
 | 
						|
var dataset = Float32Array.from(column);
 | 
						|
```
 | 
						|
 | 
						|
### Exporting Datasets to a Worksheet
 | 
						|
 | 
						|
`XLSX.utils.aoa_to_sheet` can generate a worksheet from an array of arrays.
 | 
						|
ML libraries typically provide APIs to pull an array of arrays, but it will
 | 
						|
be transposed. To export multiple data sets, manually "transpose" the data:
 | 
						|
 | 
						|
```js
 | 
						|
/* assuming data is an array of typed arrays */
 | 
						|
var aoa = [];
 | 
						|
for(var i = 0; i < data.length; ++i) {
 | 
						|
  for(var j = 0; j < data[i].length; ++j) {
 | 
						|
    if(!aoa[j]) aoa[j] = [];
 | 
						|
    aoa[j][i] = data[i][j];
 | 
						|
  }
 | 
						|
}
 | 
						|
/* aoa can be directly converted to a worksheet object */
 | 
						|
var ws = XLSX.utils.aoa_to_sheet(aoa);
 | 
						|
```
 | 
						|
 | 
						|
### Importing Data from a Spreadsheet
 | 
						|
 | 
						|
`sheet_to_json` with the option `header:1` will generate a row-major array of
 | 
						|
arrays that can be transposed.  However, it is more efficient to walk the sheet
 | 
						|
manually:
 | 
						|
 | 
						|
```js
 | 
						|
/* find worksheet range */
 | 
						|
var range = XLSX.utils.decode_range(ws['!ref']);
 | 
						|
var out = []
 | 
						|
/* walk the columns */
 | 
						|
for(var C = range.s.c; C <= range.e.c; ++C) {
 | 
						|
  /* create the typed array */
 | 
						|
  var ta = new Float32Array(range.e.r - range.s.r + 1);
 | 
						|
  /* walk the rows */
 | 
						|
  for(var R = range.s.r; R <= range.e.r; ++R) {
 | 
						|
    /* find the cell, skip it if the cell isn't numeric or boolean */
 | 
						|
    var cell = ws[XLSX.utils.encode_cell({r:R, c:C})];
 | 
						|
    if(!cell || cell.t != 'n' && cell.t != 'b') continue;
 | 
						|
    /* assign to the typed array */
 | 
						|
    ta[R - range.s.r] = cell.v;
 | 
						|
  }
 | 
						|
  out.push(ta);
 | 
						|
}
 | 
						|
```
 | 
						|
 | 
						|
If the data set has a header row, the loop can be adjusted to skip those rows.
 | 
						|
 | 
						|
### TF.js Tensors
 | 
						|
 | 
						|
A single `Array#map` can pull individual named fields from the result, which
 | 
						|
can be used to construct TensorFlow.js tensor objects:
 | 
						|
 | 
						|
```js
 | 
						|
const aoo = XLSX.utils.sheet_to_json(worksheet);
 | 
						|
const lengths = aoo.map(row => row["sepal length"]);
 | 
						|
const tensor = tf.tensor1d(lengths);
 | 
						|
```
 | 
						|
 | 
						|
`tf.Tensor` objects can be directly transposed using `transpose`:
 | 
						|
 | 
						|
```js
 | 
						|
var aoo = XLSX.utils.sheet_to_json(worksheet);
 | 
						|
// "x" and "y" are the fields we want to pull from the data
 | 
						|
var data = aoo.map(row => ([row["x"], row["y"]]));
 | 
						|
 | 
						|
// create a tensor representing two column datasets
 | 
						|
var tensor = tf.tensor2d(data).transpose();
 | 
						|
 | 
						|
// individual columns can be accessed
 | 
						|
var col1 = tensor.slice([0,0], [1,tensor.shape[1]]).flatten();
 | 
						|
var col2 = tensor.slice([1,0], [1,tensor.shape[1]]).flatten();
 | 
						|
```
 | 
						|
 | 
						|
For exporting, `stack` can be used to collapse the columns into a linear array:
 | 
						|
 | 
						|
```js
 | 
						|
/* pull data into a Float32Array */
 | 
						|
var result = tf.stack([col1, col2]).transpose();
 | 
						|
var shape = tensor.shape;
 | 
						|
var f32 = tensor.dataSync();
 | 
						|
 | 
						|
/* construct an array of arrays of the data in spreadsheet order */
 | 
						|
var aoa = [];
 | 
						|
for(var j = 0; j < shape[0]; ++j) {
 | 
						|
  aoa[j] = [];
 | 
						|
  for(var i = 0; i < shape[1]; ++i) aoa[j][i] = f32[j * shape[1] + i];
 | 
						|
}
 | 
						|
 | 
						|
/* add headers to the top */
 | 
						|
aoa.unshift(["x", "y"]);
 | 
						|
 | 
						|
/* generate worksheet */
 | 
						|
var worksheet = XLSX.utils.aoa_to_sheet(aoa);
 | 
						|
```
 | 
						|
 |