forked from sheetjs/docs.sheetjs.com
		
	
		
			
	
	
		
			40 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
		
		
			
		
	
	
			40 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| 
								 | 
							
								import { existsSync } from 'fs';
							 | 
						||
| 
								 | 
							
								import { ChatOllama } from "@langchain/community/chat_models/ollama";
							 | 
						||
| 
								 | 
							
								import { OllamaEmbeddings } from "@langchain/community/embeddings/ollama"
							 | 
						||
| 
								 | 
							
								import { HNSWLib } from "@langchain/community/vectorstores/hnswlib";
							 | 
						||
| 
								 | 
							
								import { SelfQueryRetriever } from "langchain/retrievers/self_query";
							 | 
						||
| 
								 | 
							
								import { FunctionalTranslator } from "@langchain/core/structured_query";
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import LoadOfSheet from "./loadofsheet.mjs";
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								const modelName = "llama3-chatqa:8b-v1.5-q8_0";
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								const model = new ChatOllama({ baseUrl: "http://localhost:11434", model: modelName });
							 | 
						||
| 
								 | 
							
								const embeddings = new OllamaEmbeddings({model: modelName});
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								const loader = new LoadOfSheet("./cd.xls");
							 | 
						||
| 
								 | 
							
								const docs = await loader.load();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								const vectorstore = await (async() => {
							 | 
						||
| 
								 | 
							
								  if(!existsSync("store/hnswlib.index")) {
							 | 
						||
| 
								 | 
							
								    const vectorstore = await HNSWLib.fromDocuments(docs, embeddings);
							 | 
						||
| 
								 | 
							
								    await vectorstore.save("store");
							 | 
						||
| 
								 | 
							
								    return vectorstore;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  return await HNSWLib.load("store", embeddings);
							 | 
						||
| 
								 | 
							
								})();
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								const selfQueryRetriever = SelfQueryRetriever.fromLLM({
							 | 
						||
| 
								 | 
							
								  llm: model,
							 | 
						||
| 
								 | 
							
								  vectorStore: vectorstore,
							 | 
						||
| 
								 | 
							
								  documentContents: "Data rows from a worksheet",
							 | 
						||
| 
								 | 
							
								  attributeInfo: loader.attributes,
							 | 
						||
| 
								 | 
							
								  structuredQueryTranslator: new FunctionalTranslator(),
							 | 
						||
| 
								 | 
							
								  searchParams: { k: 1024 } // default is 4
							 | 
						||
| 
								 | 
							
								});
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								const res = await selfQueryRetriever.invoke(
							 | 
						||
| 
								 | 
							
								  "Which rows have over 40 miles per gallon?"
							 | 
						||
| 
								 | 
							
								);
							 | 
						||
| 
								 | 
							
								res.forEach(({metadata}) => { console.log({ Name: metadata.Name, MPG: metadata.Miles_per_Gallon }); });
							 |